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Asymptotic formulae for two-variable Hermite polynomials 

V V Dodonov 
Lebedev Physics Institute. Leninsky Prospect, 53, 117924 Moscow. Russia and 
Moscow Institute of Physics and Technology, 16 Gagarin Street, 140160 Zhukovskiy, Moscow 
Region, Russia 

Received 19 May 1994. in final form 19 July 1994 

Abstracr New asymptotic formulae for the two-dimensional Hermite polynomials with large 
values of indices are found. The applications to the photon distribution functions in squeezed 
one-mode mixed quantum states are considered. 

1. Introduction 

In 1864, Hermite [l] introduced a class of polynomials of both one and several variables, 
whose generating functions were exponentials of some quadratic forms. The numerous 
applications of the one-dimensional Hermite polynomials are well known: it is sufficient 
to mention the solution of the harmonic-oscillator problem in quantum mechanics. As to 
the Hermite polynomials of several variables, they find useful applications, e.g., in the 
kinetic theory of gases [2] and in the theories of fluctuations [3], optical systems [4,5], 
multidimensional quantum systems with quadratic time-dependent Hamiltonians [6] (see 
also [7]) and quantum squeezed states [S-111. However, in neither the papers mentioned nor 
in the most comprehensive books on special functions [12,13] can one find any asymptotic 
formula for multidimensional Hermite polynomials. 

The aim of the present paper is to partly remove this drawback from the theory of special 
functions, i.e. to obtain asymptotic expressions for two-dimensional Hermite polynomials. 
In the special case of two-dimensional polynomials of zero arguments this problem was 
solved recently in [14] by means of reducing these polynomials to the classical (one- 
dimensional) orthogonal polynomials (the Gegenbauer polynomials) the asymptotics of 
which are well known. The approach used in the present paper, which is based on the 
remarkable integral representation for the multidimensional Hermite polynomials found by 
Feldheim [15], enables one to consider the general case of non-zero arguments. 

The formulae derived are applied to the physical problem of photon statistics in generic 
one-mode squeezed mixed quantum states. 

2. Integral representations for the two-dimensional Hermite polynomials 

We use the definition of the two-dimensional Hermite polynomials H,!?(yl, yz) [13] 
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Here, ai and a2 are arbitrary complex numbers combined into a vector a = (a1,az) 

and R is a symmetric matrix 

Another definition was used by Feldheim [l5]. He considered the following polynomials 
Fi?)(z) defined as 

where matrix F reads 

Comparing equations (2.1) and (2.2) and introducing the notation 

~ = - R I z  r i l = R i ~ + p  r z z = R u + p  

we may write the following relation between two types of polynomials: 

HL3Y1, YZ) = @/2) (m+n)’2F;?) ( Y I m ,  y 2 m )  (2.4) 

h2 = nl/p p’ =  ZIP. (2.5) 

Imposing on the parameters h and p the restrictions 

Ihj > 1 lpl > 1 +p-2 < 1 (2.6) 

Feldheim obtained in [IS] (having made the reference to his preceding papers [16]) the 
following integral representation: 

where 

5 = (A2 - ])Xi - x2 q = -xl + (PZ - 1)xz 

and H,(z)  is the usual Hermite polynomial [13] defined as 
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Due to equation (2.4), we get the following integral representation for the two-dimensional 
Hermite polynomials: 

where 

YI = R I I Y I  - P Y ~  Yz = RZZYZ - P Y I .  

Restrictions (2.6) can be rewritten as 

P P  l?l,l -+- < 1. 
rll  r22 

The last of these conditions is equivalent to the inequality (provided rllr= > 0) 

A = d e t R =  R I I R z z - P ~ > O .  (2.9) 

Replacing each one-dimensional Hermite polynomial on the right-hand side of 
equation (2.7) with its integral representation [ 1 3 ]  

we obtain a Gaussian integral with respect to z, which can be easily calculated. In this 
way, we arrive at the following expression: 

Thus, we have to evaluate the integrals with the following structure: 

where 

(2.12) 

(2.13) f = &&Yl g = f&YZ. 
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For large values of integers m and n this can be achieved by means of the steepestdescent 
method. The saddle point is determined from the equations (see appendix for details) 

m 

f l  

n 
t2 

-2atl -ctz + - +i f  = 0 

- 2bt2 - ctl + - + ig = 0. 

(2.14) 

(2.15) 

Designating the solutions to these equations by r1 and 52 and taking into account their 
consequence 

a t :  + br: + cqrz = f(m + n + ifst + ig72) 

we get the following asymptotics form, n >> 1 (see equation (A.4)): 

(2.16) 

3. The case of zero arymenh 

Equations (2.14) and (2.15) can be easily solved in the case of f = g = 0, which 
corresponds to polynomials with zero arguments. Consider first the 'diagonal' polynomials 
with m = n. Then one gets immediately the relation ar: = br;. Since we integrate in 
equation (2.1 1) from 0 to +CO both over 71 and 72, we must choose (bearing in mind that 
the real parts of coefficients a and b must be positive to guarantee the convergence of the 
integral (2.1 I)) 72 = 7lm. Then we have the following solutions: 

Putting them into equation (2.16), we get 

This formula, together with equations (2.10) and (2,12), leads to the following asymptotics 
of the 'diagonal' Hermite polynomials of zero arguments for m >> 1: 

where 

R = m  C = p f R .  

(3.3) 

(3.4) 

It coincides with the formula obtained in [I41 in the framework of a more complicated 
approach. 
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If m # n, we may exclude, e.g., variable rz from equations (2.14) and (2.15). Then 
we anive at the biqundratic equation for ?I. Choosing the solution of this equation which 
coincides with (3.1) when m = n, we have 

y - (n  + m)c 'I2 ] (3.5) 

where 

y = [lbabmn + c2(m - n ) 2 ] 1 / 2  

Thus, we obtain the following asymptotics of integral (2.11): 

It results in the following generalization of equation (3.3): 

Hk:J(O, 0)  c (mRl l /e )m/z(nRu/e)"/2  

11 + (m + n ) ~ ] ( ~ + " + ' ) / ~  
cos ( y r )  

where 

(3.7) 

(3.8) 

Formula (3.7) can be simplified in two important special cases. The first corresponds 
to the 'quasi-diagonal' polynomials, when ( m  - n)2 << m + n 

(3.9) 
The second case corresponds to the 'asymmetric' polynomials when m > n2 and mp2 >> 
nRIIRZ2 .  Then mz x 1 and the first term inside the figure brackets in equation (3.7) appears 
much greater than the second one. Thus, the leading term of the asymptotic expansion does 
not contain coefficient R22 at all 

In 1141, the following asymptotics were found for m - n >> 1 and n - O(1) (without 
any restriction on parameter R12): 

with A as defined in equation (2.9). If mRfz >> n2A, then we may replace H,(x)  by its 
leading term (2x)" and equation (3.11) turns into equation (3.10) due to Stirling's formula 
for the gamma function (remember that RIZ = -p). This means that equation (3.10) holds, 
in fact, not only for large values of n (as was assumed in its derivation), but in the ease of 
n - O(1) as well (provided the other restrictions are satisfied, of course). 
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4. Non-zero arguments 

Now we proceed to the generic case when the arguments of the two-dimensional Hermite 
polynomial are not equal to zero. This means that f # 0 and g # 0 in equation (2.11). In 
such a case, the system of equations (2.14) and (2.15) is equivalent to a complete algebraic 
equation of the fourth order for f l  or fz, which cannot be solved in an explicit analytical 
form. Therefore, we assume that both parameters, f and g, are of the order of unity when 
m >> 1 and n >> 1. Then we may look for the approximate solutions of equations (2.14) 
and (2.15) in the form of the series 

(4.1) r j = r j  (0) +r j  (1) +?. (2) +.... 
J 

PuttinE this expansion into equations (2.14) and (2.15) yields the following equations for - 
the first-order corrections: 

p a  + m[+‘)~-~)r:” + c$)  = if 

cr,(I) + {2b + n[rz J )r2 - ig. (0) -2 (1) - , 

The second-order corrections obey the similar equations 
p u  + m[r,‘0’~-2~r,@’ + c$) = m[rl (1) I 2 [rl (0) I -3 

c r p  + (2b + n[rio’~-Z)r:2’ = n[rz (1) I 2 [r, (0) I -3 . 

One can easilv check that the kth term of the exoansion (4.1) IS the order c 

(4.3) 

. ,  nagnitude 
7:”’ - U(m(l’k)lzfk), Its contribution to the argument of the exponential in equation (A.4) 
has the order O(m(’-k) / z f (k+’) ) .  In particular, putting the expansion equation (4.1) into the 
right-hand side of equation (A.4) and taking into account equations (2.14). (2.15), (4.2) and 
(4.3). we arrive at the relation 

I (o)  being given by equation (3.6). (Evidently, although we may replace rj with ry) in 
the pre-exponential square-bracket term of equation (A.4), nonetheless, we must take into 
account al! the corrections in the term r; and r;.) Consequently, we have to calculate 
only the first-order corrections to the solutions (3.5) since f’/& << 1 for f - U(1). The 
explicit expressions for these corrections are as follows: 

Putting these expressions into equation (4.4) yields the formula 

Subcmnfg- f*b[y+(m-n)c](y+nc)  -g2a[y+(n-m)cl(y+mc) 
Saby[y + (m + n)cl 

+ 
(4.7) 
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Calculating the integral on the right-hand side of equation (2.10) with the aid of this 
formula and using equation (2.13), we arrive after some algebra at the following asymptotic 
expression for the generic Hermite polynomial of two variables: 

H ~ , ’ ( Y I ,  YZ) % (mR11/e)m/2(nR22/e)”’2exp[~Q(yl, Y Z ) ~  

{ U y l ) / z  um” -m/2 U,, -“I2 c o s ( y l ~ - y ~ ~ - ~ x )  

We have introduced the following notation: 

U,, = 1 + (m - n)z 

Coefficients A and z were defined in equations (2.9) and (3.8). When yl = yz = 0, 
equation (4.8) turns into equation (3.7). For the ‘diagonal’ polynomial, we have a simpler 
expression 

U* = 1 h (m + n)z Q = RIIY: + Rnyz - 2pylyz. 

(4.9) 

For the ‘quasi-diagonal’ polynomials (when (m - n)’ << (m + n)), one should only insert 
the true phases -(m - n)n/2 and -(m + n)a/2 into the arguments of the cosine functions 
and change the amplitude factors in accordance with equation (3.9). 

In the opposite limit case m >> nz, we have the following generalization of 
equation (3.10) (provided mC2 >> n):  

2 Hi;l(yl, y 2 )  % (7)”’ mRii (m)”Zpncos ( m y  - 
RI I 

(4.10) 

where 

P Y = Yi - -Y2 
RI I 
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5. Applications: influence of quantum mixing on the photon distribution function in 
the squeezed states 

Analysing all the steps which have led to the formulae obtained above, one may conclude 
that these formulae are valid provided both the coordinates of the saddle point given by 
equation (3.1) or (3.5) and the pre-exponential factor in equation (A.4) have positive real 
parts. For any real matrix R, these conditions are equivalent to restrictions (2.8). It 
is interesting that these restrictions are fulfilled automatically when the two-dimensional 
Hermite polynomials are used to express the photon distribution function of the generic one- 
mode squeezed state (for reviews devoted to the squeezed states see, e.g., [17,18]). The most 
remarkable feature of this distribution function, discovered independently in [9,19-211, is its 
oscillating character for some sets of parameters. These oscillations manifest themselves in 
the most distinct way for the pure quantum states when the distribution function is reduced 
to the modulus squared of the usual (one-dimensional) Hermite polynomial (see, e.g., [ZZ]). 
The influence of quantum mining on the properties of squeezed states was investigated 
numerically in [9,20,23] where it was shown that mixing destroys the oscillations. Here, 
the same results will be obtained in an analytical form. 

From the mathematical point of view, the so-called quadrature squeezed states may be 
considered as a certain subclass of the states described by means of the Gaussian density 
matrices (in the coordinate representation) or the Wigner functions (in the phase-space 
representation) [7,24]. Any Gaussian distribution of two variables-the so-called quadrature 
components q and p-is determined completely by the first-order average values (9) and 
( p )  and by their variances U,,, upp, The photon distribution function corresponding to a 
generic Gaussian state is given by the ‘diagonal’ two-dimensional Hermite polynomial [ 111 

with the following elements of matrix R 

and vector y 

Here 

2 d uPpu9q - up, T = ~ p p p  + u , ~  

are two independent invariants of the variance matrix 

= (% 9, 
UPPP cr,, 

The probability of having no photons PO is given by the formula 

(5.4) 
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Due to the generalized uncertainty relation [7] (which ensures the positive definiteness 
of the statistical operator in the case under study), d > $. Consequently, RIZ < 0. Since 
the photon distribution function is obviously invariant with respect to the rotations in the 
phase plane p - q, one may eliminate the covariance up, by means of a suitable rotation of 
the coordinate axes in this plane. Moreover, one may always believe upp > uqq (redefining 
p and q ,  if necessary). Thus, without any loss of generality, we may assume that the 
coefficients R ~ I ,  RZZ and p = -Rlz are non-negative. Then, the first two restrictions from 
(2.8) are fulfilled automatically. The most important is the third restriction det R > 0. Due 
to equation (5.2) 

2 T - 4 d - 1  
2T + 4d + 1' 

dei R = (5.6) 

On the other hand, solving equations (5.4) with respect to upp and U,,, we get the expressions 
(provided up, = 0) 

If det R > 0, then T > 2d t 4 and U,, c 4, which means that the quantum state is indeed 
squeezed, since ufq is less than the variance of the quadrature component in the ground 
state. 

To find the asymptotics of the photon distribution function, we need a simplified version 
of equation (4.9) for R11 = R& and y1 = y; 

where x = &yl. If up, = 0 and uPp U,,, then, due to equations (5.2)-(5.4), we obtain 
the following expressions for the parameters entering the right-hand side of equation (5.8): 

Z&==z 4d - 1 
2T f 4 d  + 1 5 = 2 m  

R =  

1 ( 4 )  m- T + 1 +im t T - 1 

(5.9) 

(5.10) 

The oscillations of the photon distribution function manifest themselves to the greatest extent 
when Imx = 0 (i.e. when ( p )  = 0 for our choice of the coordinate axes) and r << 1 and 
they quickly disappear when Im x becomes large or 5 -+ 1. For this reason, we confine 
ourselves to the case of highly squeezed (T >> 1) and slightly mixed (8 = 4d - 1 << 1) 
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states. Then, the leading terms of the corresponding expansions of equations (5.9) and 
(5.10) are as follows 

For ( p )  = 0, equations (5.1), (5.5) and (5.8) result in the following asymptotical formula 
(Stirling’s formula for m! was used): 

(5.11) 

It is correct provided that the higher-orders terms in the expansions of functions R and ( 
in the power series of the small parameter T-’ can be neglected. This condition implies, 
in particular, the relation m / T 2  < I .  In such a case, equation (5.11) can be written in the 
following equivalent form: 

(5.12) 
1 P, W - 

If (q )  = 0, we have large maximums for the even values of m and small minimums for the 
odd values of m .  The ratio of the neighbouring minimal and maximal values of Pm equals 

Consequently, the oscillations disappear when m8/T  > 1 (then P,,,i,/P,, > 4). For 
(q )  # 0, the picture of oscillations is more complicated. The oscillations disappear even for 
6 = 0, if 2&(q) = ( x / 2 )  x (odd integer). Moreover, if Z&(q) = x x (odd integer), 
then maximums take place for odd values of m, whereas minimums take place for even 
values. (One should remember that the asymptotical formulae with y~ - (4) # 0 derived 
in the preceding section are valid provided (q)  << f i . Therefore, the shift m + m + 1 
does not change the value of cos(Z&(q)).) 

Parameter 8 = 4d - 1 characterizes ‘the degree of quantum mixing’ due to the relation 
Tr,$ = (1 +6)-Il2, being tbe normalized statistical operator of the system. Evidently, the 
squeezed mixed state is not an equilibrium state. Nonetheless, some conventional ‘effective 
temperature’ can be introduced in a more or less unambiguous way if one takes into account 
that a mixed squeezed state 6 can be obtained from a certain ‘initial‘ equilibrium state .& 
by means of a linear canonical transformation of the ‘initial’ coordinates qo and po [8] 

where S is a unitary ‘squeezing operator’ and A is the corresponding symplectic matrix. 
The ‘initial’ and ‘final’ variance matrices are related as follows: U = AupiT, AT being 
the transposed matrix. Since any symplectic matrix satisfies the identity det(AAT) 1, we 
have 

(5.13) 
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being the dimensionless inverse temperature of the ‘initial‘ equilibrium state. 
Equation (5.13) just provides an unambiguous definition of the ‘effective temperature’ for 
any squeezed state. For ‘slightly mixed‘ states 

so the oscillations of the photon distribution function disappear when m > TeB (provided 
m >> 1, T >> 1, B >> 1). 

6. Discussion 

Let us outline briefly the problems which still need to be solved. In principle, it is clear 
how to obtain the generalization of the formulae for the two-dimensional polynomials to 
the N-dimensional case on the basis of the multidimensional generalization of the FeIdheim 
integral representation. The work in this direction is in progress and tha results will be 
reported elsewhere. However, this approach can be applied for the restricted class of 
polynomials generated by matrices with positive determinants only. It woclld be interesting 
to find the method applicable to polynomials with arbitrary generating matrices (as was 
performed in [ 141 for the two-dimensional polynomials of zero argumenls). Besides, the 
asymptotic behaviour of the two-dimensional polynomials for large values of the argument 
IyI J;;; is still unknown (except for the trivial case when IyI >> m). 

Appendix 

Since the steepest-descent method is usually applied to the integrals of a single variable, let 
us briefly discuss its applicability to the integral of two variables 

I = lm dtl lm dt2 exp[F ( t i ,  td l  . 

Assuming rz to be a parameter, we may evaluate first the integral over t i .  It equals 

where q ( t Z )  is determined from the equation aF/ag = 0 and Fi, = azF/atiatj.  
Designating @(q)  = F(s1(#2) ,  e) ,  we find the saddle point for the integral (A.2) from 
the equation aQ/atz = 0. However, this equation is equivalent to aF/at2  = 0 due to the 
relation 

Consequently, the saddle point for the two-dimensional integral can be dettsrmined directly 
from the system of equations 

aF - =o. aF - = o  
atl atz 

(A.3) 
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As to the pre-exponential factor, it equals 2n[F11(r1(rz), r~)Q"(s2)1-"~ where q and rz 
are the solutions to equation (A.3). Due to the definition of function Q(tz ) ,  we get 

The last term in this expression becomes zero at the saddle point. To find the derivative 
drljdr2, we take into account that the equation aF(ri(tz),r2)/atr = 0 must be satisfied 
identically for all values of t2. Differentiating this identity with respect to tz, we get 
drljdt2 = -Fl2/FlI. Consequently, @"(TI, r2) = FZ2-F,?JF~l. Therefore, theasymptotics 
of the integral (A.l) reads 

I = ~ ~ [ F ~ I F z z  - F~zl-1'2exp[F(r~, t 2 ) l .  (A.4) 

This expression shows that the most direct way to obtain the asymptotics of the integral 
(A.l) is as follows. First, one should find the saddle point in the two-dimensional space 
from the system of equations (A.3). Then. one should develop function F(tl, f2) in Taylor's 
series in the vicinity of the saddle point up to second-order terms and calculate the arising 
Gaussian integral. The result will be given just by equation (A.4). Note that both function 
F and the coordinates of the saddle point ( t1 ,q)  may be complex. 
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